If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-48=0
a = 49; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·49·(-48)
Δ = 9408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9408}=\sqrt{3136*3}=\sqrt{3136}*\sqrt{3}=56\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56\sqrt{3}}{2*49}=\frac{0-56\sqrt{3}}{98} =-\frac{56\sqrt{3}}{98} =-\frac{4\sqrt{3}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56\sqrt{3}}{2*49}=\frac{0+56\sqrt{3}}{98} =\frac{56\sqrt{3}}{98} =\frac{4\sqrt{3}}{7} $
| H^6+6h+16=0 | | 1=3(x-4)-(x-7) | | 5x+158=12x-10 | | (8x^2)+16x+3=0 | | 49x^2-70+22=0 | | X-25=x-9 | | z²=36 | | m²+10m+9=0 | | 40x^2-70x+26=14-9x^2-10 | | 2/3x-2=1/2x-1 | | 4x^2-9=71 | | x^2+3=51 | | 2(x-3)-5=-4(x-5) | | 33x^2+19x-2=0 | | 3x+3=2x-14 | | 7x+2x+3=2+7 | | 23+2x=-6x+4 | | 1/4(8n-16)=3n+2 | | x^-6x-41=0 | | 4y@7=y+17 | | -6x=26/13*7 | | (x-5)÷2×8=3x | | X^2+Y^2-18x+14Y+105=0 | | 2(2x+2)+2(x-1)=110 | | (y+6)^2=169 | | 7x-x/2=6 | | t2+8+16=0 | | 4=x÷2-5 | | 16+7x-5-x=11-3-x | | 6y=1-y/y | | 10/(x-1.5)-10/x=1.5 | | x²-10x+25=16 |